14 research outputs found

    Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations

    Get PDF
    The transformation of barchans into parabolic dunes has been observed in various dune systems around the world. Precise details of how environmental controls influence the dune transformation and stabilisation mechanism, however, remain poorly understood. A ‘horns-anchoring’ mechanism and a ‘nebkhas-initiation’ mechanism have previously been proposed and selected environmental controls on the transformation have been explored by some modelling efforts, but the morphodynamic processes and eco-geomorphic interactions involved are unclear and comparison between different dune systems is challenging. This study extends a cellular automaton model, informed by empirical data from fieldwork and remote sensing, to fully explore how vegetation characteristics, boundary conditions, and wind regime influence the transformation process and the resulting dune morphologies. A ‘dynamic growth function’ is introduced for clump-like perennials to differentiate between growing and non-growing seasons and to simulate the development of young plants into mature plants over multiple years. Modelling results show that environmental parameters interact with each other in a complex manner to impact the transformation process. The study finds a fundamental power-law relation between a non-dimensional parameter group, so-called the ‘dune stabilising index’ (S⁎), and the normalised migration distance of the transforming dune, which can be used to reconstruct paleo-environmental conditions and monitor the impacts of changes in climate or land-use on a dune system. Four basic eco-geomorphic interaction zones are identified which bear different functionality in the barchan to parabolic dune transformation. The roles of different environmental controls in changing the eco-geomorphic interaction zones, transforming processes, and resulting dune morphologies are also clarified

    The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response

    No full text
    Aeolian dune field development in coastal and semi-arid environments is a function of complex ecogeomorphic interactions which are sensitive to fluctuations in climatic and environmental conditions. We explore the relationships between ecological and geomorphic processes in the development of these landscape patterns and speculate on their response to variations in vegetation vitality and sediment transport capacity, indicating possible consequences of climate and land use change, using the Discrete ECogeomorphic Aeolian Landscape (DECAL) cellular automaton algorithm. This algorithm models dune field behaviour that reflects long-term trends prevalent in palaeo-records, but also elucidates possible evolutionary progressions, relaxation period sequences and threshold sensitivities. The landscape response is sensitive both to the perturbation itself and the state of the system when the disturbance occurs. Response amplitude decreases in simulated systems with reduced mobility unless an external disturbance mimicking fire or land clearance is applied concurrently with a reduction in growth vigour triggering a threshold type response when sufficient vegetation is removed. The model demonstrates that the relative response characteristics of the multiple vegetation types and their mutual feedback with geomorphic processes impart a significant influence on landscape equilibrium or attractor states. Fast growing vegetation enables the formation of hairpin (long-walled) parabolic dune systems, which eventually become sediment starved and stabilise, whereas inhospitable conditions inhibiting vegetation growth contribute to the development of active transgressive transverse dune fields. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring thresholds, sensitivities and possible evolutionary trajectories associated with the interactions between ecology, geomorphology and climatic conditions in complex earth surface systems

    Cellular automaton modelling of the effects of buildings on aeolian bedform dynamics

    Get PDF
    Buildings affect aeolian sediment transport and bedform development in sandy environments. Cellular automaton (CA) models have, however, only been used to simulate natural bedform dynamics. This study extends a well-known aeolian CA model to include sediment dynamics around buildings, and uses this model to explore the interaction of building-induced deposition and erosion with natural bedform dynamics. New CA rules are introduced to represent acceleration, deceleration and sideward transport of sediment around obstacles. The simulated deposition and erosion patterns show good agreement with field experiments. The model reproduces the shape and location of the morphological pattern around a single building, and effects of building spacing on this pattern for building groups. Model results further demonstrate that building-induced effects interact with local bedform dynamics and can alter the shape, growth and migration of sand dunes.Hydraulic Structures and Flood Ris
    corecore